ПОИСК
Категории статей

Автомобили и мотоциклы
Бизнес и финансы
Интернет
Искусство и культура
Компьютер и периферия
Медицина и здоровье
Музыка
Наука и образование
Непознаное, магия
Обустройство
Общество
Отдых и развлечения
Природа
Продукты питания
Промышленность
Прочее
Путешествия
Религия
Связь, сотовая, телефония
Семья, дети
СМИ, радио, телевидение
Спорт
Строительство и ремонт
Торговля
Услуги
Хобби

Категория: Строительство и ремонт



Производство керамзита

Сущность процесса производства керамзита состоит в обжиге глиняных гранул по оптимальному режиму. Для вспучивания глиняного комочка требуется, чтобы активное газовыделение совпало по времени с переходом глины в пиропластическое состояние. Но в обычных условиях газообразование при обжиге глин происходит в основном при более низких температурах, чем их пиропластическое размягчение. К примеру, температура диссоциации карбоната магния — до 600°С, карбоната кальция — до 950 °С, дегидратация глинистых минералов происходит при температуре до 800 °С, а выгорание органических примесей еще раньше, реакции восстановления окислов железа происходят при температуре по­рядка 900 °С, тогда как в пиропластическое состояние глины переходят при температурах, как правило, более 1100 °С.

В связи с этим при обжиге сырцовых гранул в производстве керамзита необходим активный подъем температуры, так как при медленном обжиге большая часть газов выделяется из глины до ее размягчения и в итоге получаются плотные маловспученные гранулы. Но чтобы быстро нагреть материал до нужной температуры, ее сначала требуется подготовить, т. е. обсушить и подогреть. В данном случае интенсифицировать процесс нельзя, так как при быстром нагреве в резуль­тате усадочных и температурных деформаций, а также скорого парообразования гранулы могут потрескаться или распасться (взорваться).

Оптимальным считается ступенчатый режим термообработки по С. П. Онацкому: с постепенным нагревом сырцо­вых гранул до 200—600 °С (в зависимости от особенностей сырья) и последующим быстрым нагревом до температуры вспучивания (примерно 1200 °С).

Обжиг осуществляется во вращающихся печах, представляющих собой цилиндрические металлические барабаны диаметром до 2,5—5 м и длиной до 40— 75 м, футерованные изнутри огнеупорным кирпичом. Печи устанавливаются с уклоном примерно 3% и медленно вращаются вокруг своей оси. Благодаря этому сырцовые гранулы, подаваемые в верхний конец печи, при ее вращении, постепенно скатываются к противоположному концу барабана, где стоит форсунка для сжигания газообразного или жидкого топлива. Таким образом, вращающаяся печь работает по принципу противотока: сырцовые гранулы двигаются навстречу потоку горячих газов, подогреваются и, в итоге, попав в зону прямого воздействия огненного факела форсунки, вспучиваются. Среднее время нахождения гранул в печи — примерно 45 мин.

Чтобы получить требуемый режим термообработки, зону вспучивания печи, непосредственно примыкающую к форсунке, изредка отделяют от другой части (зоны подготовки) кольцевым порогом. Применяют также двухбарабанные печи, в которых зоны подготовки и вспучивания представлены двумя сопряженными барабанами, вращающимися на различных скоростях.

В двухбарабанной печи получается создать оптимальный для каждого вида сырья режим термообработки. Промыш­ленный опыт показал, что при этом повышается качество керамзита, на много увеличивается его выход, а так­же сокращается удельный расход топлива. В связи с тем, что хорошо вспучивающегося глинистого сырья для произ­водства керамзита относительно мало, при использовании средне- и слабовспучивающегося сырья нужно стре­миться к оптимизации режима термообработки.

Из зарубежного опыта известно, что для получения заполнителей типа керамзита из сырья (промышленных отходов), отличающегося особой чувствительностью к типу обжига, применяют трехбарабанные вращающиеся печи или три-четыре последовательно располагаемые печи, в которых поддерживаются не только наилучшие скорость и длительность нагрева на каждом этапе термообработки, но и переменная газовая среда.

Значение характера газовой среды в выпуске керамзита обусловлено происходящими при термической обработке химическими реакциями. В восстановительной среде окись железа Fe2O3 преобразуется в закись FeO, что является не только одним из фактором газообразования, но и важнейшим фактором преобразования глины в пиропластическое состояние. Внутри гранул восстановительная среда поддерживается за счет наличия органических примесей или добавок, но при окислительной среде в печи (при большом избытке воздуха) органические примеси и добавки могут раньше времени выгореть. Поэтому окислительная газовая среда на стадии термоподготовки, как правило, не предпочтительна, хотя есть и другая точка зрения, согласно которой разумно производить высокопрочный керамзитовый гравий с невспученной плотной корочкой. Такая корочка толщиной до 3 мм (по предложению Северного филиала ВНИИСТ) при выгорании органических примесей в поверхностном слое гранул, обжигаемых в окислительной среде.

По мнению экспертов, при производстве керамзита нужно стремиться к увеличению коэффициента вспучивания исходного материала, так как невспучивающегося или маловспучивающегося исходного материала для получения высокопрочного заполнителя имеется достаточно, а хорошо вспучивающегося не хватает. С этой точки зрения наличие плотной корочки значительной толщины на керамзитовом гравии показывает о недо­использовании способности сырья к вспучиванию и умень­шении выхода продукции.

В восстановительной среде зоны вспучивания печи мо­жет произойти оплавление поверхности гранул, поэтому газовая среда в этом месте должна быть слабоокислительной. При этом во вспучивающихся гранулах поддерживается вос­становительная среда, обеспечивающая пиропластическое состояние массы и газовыделение, а поверхность гранул остается не оплавленной.

Характер газовой среды косвенно, через окисное или закисное состояние железистых примесей, влияет на цвет керамзита. Красновато-бурая поверхность гранул свидетельствует об окислительной среде (Fe2O3), темно-серая, почти черная окраска в изломе — о восстановительной (FeO).

Отмечают четыреосновные технологические схемы подготовки сырцовых гранул, или четыре способа производства керамзита: сухой, пластический, порошково-пластический и мокрый.

Сухой метод используют при наличии камнеподобного глинистого сырья (плотные сухие глинистые породы, глинистые сланцы). Он наиболее прост: сырье раздрабливается и выкладывается во вращающуюся печь. Предварительно нужно отсеять мелочь и слишком крупные куски, отправив последние на повторное дробление. Этот метод оправдывает себя, если исходная порода однородна, не содержит вредных включений и характеризуется достаточ­но большим коэффициентом вспучивания.

Наибольшее применение получил пластический способ. Рыхлое глинистое сырье по этому метод перерабатывается во влажном состоянии в вальцах, глиномешалках и других агрегатах (как в производстве кирпича). Затем из пластичной глиномассы на дырчатых вальцах или ленточных шнековых прессах получаются сырцовые гранулы в виде цилиндриков, которые при последующей транспортировке или при специальной обработке окатываются, округляются.

Качество сырцовых гранул во многом показывает ка­чество получаемого керамзита. Поэтому нужна тщательная обработка глинистого сырья и формование плотных гранул одного и того же размера. Размер гранул задается исходя из требуемой крупности керамзитового гравия и установленного для данного сырья коэффициента вспучи­вания.

Гранулы с влажностью примерно 20% могут сразу направляться во вращающуюся печь или, что целесообразнее, сначала подсушиваться в сушильных барабанах, в других теплообменных устройствах с использованием жара отходящих дымовых газов вращающейся печи. При направлении в печь подсушенных гранул ее производительность может быть увеличена.

Поэтому, производство керамзита по пластическому способу сложнее, чем по сухому, более энергоемко, требует больших капиталовложений, но, в этом случае, обработка глинистого сырья с разрушением его природной структуры, усреднение, гомогенизация, а так­же возможность улучшения его добавками позволяют повысить коэффициент вспучивания.

Порошково-пластический способ отличается от пластического тем, что вначале помолом сухого глинистого сырья получают порошок, а потом из этого по­рошка при добавлении воды изготавливают пластичную глиномассу, из которой делают гранулы, как описано до этого. Необходимость помола связана с затрата­ми. Но, если сырье недостаточно сухое, нужна его сушка перед помолом. Иногда этот способ подготовки сырья подходит: если сырье неоднородно по составу, то в порошкообразном состоянии его легче транспортировать и гомогенизировать; если требуется вводить добавки, то при помоле их намного проще равномерно распределить; если в сырье есть вредные включения зерен известняка, гипса, то в размолотом и распределенном по всему объему состоянии они уже не опасны; если такая тщательная обработка сырья приводит к увеличению вспучивания, то повышенный выход продукции и его более высокое качество оправдывают произведенные затраты.

Мокрый (шликерный) способ заключается в разведении глины в воде в специальных больших емкостях — глиноболтушках. Влажность получаемой пульпы (шлике­ра, шлама) примерно 50%. Пульпа насосами перекачивается в шламбассейны и оттуда — во вращающиеся печи. В этом случае в части вращающейся печи стоит завеса из подвешенных цепей. Цепи служат теплообменником: они нагреваются выходящими из печи газами и частично высушивают пульпу, затем разбивают подсыхающую «кашу» на гранулы, которые окатываются, окончательно высыхают, нагреваются и вспучиваются. Недостаток этого метода — увеличенный расход топлива, связанный с большой начальной влажностью шликера. Преимуществами являются получение однородности сырьевой пульпы, возможность и простота введения и тщательного распределения добавок, простота очищения из сырья каменистых включений и зерен известняка. Такой способ рекомендуется при высокой карьерной влажности глины, когда она выше формовочной (при пластическом формовании гранул). Он может быть применен также вместе с гидромеханизированной добычей глины и подачей ее на завод в виде пульпы по трубам вместо применяемой сейчас разработки экскаваторами с перевозкой автотранспортом.

Продукт, получаемый по любому из описанных выше способов, после обжига необходимо остудить. Установлено, что от скорости охлаждения зависят прочностные свойства керамзита. При слишком быстром охлаждении керамзита его зерна могут потрескаться или же в них сохранятся остаточные напряжения, которые могут проявиться в бетоне. С другой стороны, и при слишком мед­ленном охлаждении керамзита сразу после вспучивания возможно уменьшение его качества из-за смятия размягченных гранул, а также в связи с окислительными процессами, в результате которых FeO переходит в Fe2O3, что сопро­вождается деструкцией и уменьшением прочности.

Сразу после вспучивания желательно быстрое охлаж­дение керамзита до температуры 800—900 °С для закрепления структуры и предотвращения окисления закисного железа. после рекомендуется медленное охлаждение до температуры 600—700 °С в течение 20 мин для обеспечения затвердевания стеклофазы без термических на­пряжений, а также появления в ней кристаллических минералов, повышающих прочность керамзита. Далее возможно сравнительно быстрое охлаждение керамзита в течение нескольких минут.

Первый этап охлаждения керамзита осуществляется еще в пределах вращающейся печи поступающим в нее воздухом. Затем керамзит охлаждается воздухом в барабанных, слоевых холодильниках, аэрожелобах.

Для фракционирования керамзитового гравия используют грохоты, преимущественно барабанные — цилиндрические или многогранные (бураты).

Внутризаводской транспорт керамзита — конвейерный (ленточные транспортеры), редко пневматический (потоком воздуха по трубам). При пневмотранспорте возможно повреждение поверхности гранул и их раскалывание. Поэтому этот удобный и во многих отношениях эффективный вид транспорта керамзита не получил широкого распространения.

Фракционированный керамзит поступает на склад готовой продукции бункерного или силосного типа.

Доставка керамзита до объекта заказчика в основном производится самосвалами с кузовом разного объема, оптимально подходящего для доставки нужного заказчику количества керамзита.